Radial maximal function characterizations for Hardy spaces on RD-spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Maximal Function Characterizations for Hardy Spaces on RD-spaces

An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type X having “dimension” n, there exists a p0 ∈ (n/(n+ 1), 1) such that for certain classes of distributions, the L(X ) quasi-norms of their radial maximal functions and grand maximal functions are ...

متن کامل

Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications

Let X be an RD-space with μ(X ) = ∞, which means that X is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces H at(X ) of Coifman and Weiss for p ∈ (n/(n + 1), 1] via the radial maximal function, where n is the “dimension” of X , and the range of index p is the best possible. Thi...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Maximal Function Characterizations of Hardy Spaces Associated to Homogeneous Higher Order Elliptic Operators

Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients and (q−(L), q+(L)) be the maximal interval of exponents q ∈ [1, ∞] such that the gradient semigroup { √ t∇e}t>0 is bounded on L(R). In this article, the authors establish the non-tangential maximal function characterizations of the associated Hardy spaces H L(R) for all p ∈ (0, q+(...

متن کامل

Localized Hardy Spaces H Related to Admissible Functions on RD-Spaces and Applications to Schrödinger Operators

Let X be an RD-space, which means that X is a space of homogenous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in X . In this paper, the authors first introduce the notion of admissible functions ρ and then develop a theory of localized Hardy spaces H ρ (X ) associated with ρ, which includes several maximal function characterizations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2009

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2574